skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Davenport, F. V."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract An open question in the study of climate prediction is whether internal variability will continue to contribute to prediction skill in the coming decades, or whether predictable signals will be overwhelmed by rising temperatures driven by anthropogenic forcing. We design a neural network that is interpretable such that its predictions can be decomposed to examine the relative contributions of external forcing and internal variability to future regional sea surface temperature (SST) trend predictions in the near-term climate (2020–2050). We show that there is additional prediction skill to be garnered from internal variability in the Community Earth System Model version 2 Large Ensemble, even in a relatively high forcing future scenario. This predictability is especially apparent in the North Atlantic, North Pacific and Tropical Pacific Oceans as well as in the Southern Ocean. We further investigate how prediction skill covaries across the ocean and find three regions with distinct coherent prediction skill driven by internal variability. SST trend predictability is found to be associated with consistent patterns of decadal variability for the grid points within each region. 
    more » « less